
the meniscus and the use of R m as a characteristic parameter of the meniscus loses its mean- 

ing. 
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FINITE-AMPLITUDE INTERNAL WAVES AT AN INTERFACE 

BETWEEN TWO HEAVY LIQUIDS 

S. I. Plaksin UDC 532.591 

The problem of steady-state waves at an interface between two heavy liquids has been 
discussed in several papers (see, e.g., [i, 2]). Here a method is proposed on the basis of 
reduction of the problem to the solution of a nonlinear conjugation problem. 

Let us consider the flow of two incompressible liquids of different densities in a grav- 
ity field with specified velocities at an infinite distance from the interface. We consider 
the motion to be irrotational and assume that the interface line l, which moves at a certain 
horizontal velocity U without changing shape, is a Lyapunov curve with period X. We set up 
a coordinate system OXY moving in the direction of wave propagation with velocity U. We as- 
sume that the absolute particle velocity of the liquia at the interface differs from the wave- 
propagation velocity. Under this condition the waves are nonbreaking [3]. 

We place the origin at the average level of the liquid interface line, directing the 
axis OX along the horizontal in the direction of absolute motion of the line Z, and the axis 
OY along the vertical upward through one of the wave crests (Fig. I). By ~k, k = i, 2, we 
denote the domains with period X occupied by the upper and lower liquids. We introduce the 
complex variables Z k = X k + iY in ~k' corresponding to the complex-valued potentials W k = 
~k + i~k and complex velocities V k = dWk/dZ k. We denote the absolute velocities of the li- 
quids at an infinite distance from the interface by Vk~ and the densities by pk(p~ < P2). 

We transform to dimensionless variables, putting V k = VkF~, Z k = ZkX/2w , and W k = 
WkV1~X/2w. 

Under the stated assumptions the problem reduces to the determination of the wave pro- 
file and functions v k that are analytic in ~k and satisfy the kinematic and dynamic condi- 
tions at Z as well as the following condition at an infinite distance from the interface: 

I m  (z) = [mllvl(z)[" - -  (1 -k ml)[v~(z)["-I Fr /2? :  § c, z ~ l ;  

u I -+I -- y, !/I -+oo; v~ -+5 -- y, !/~ -+--co, 

(i) 

where Fr = U22~/gX; ml = p,/(P2 -- P~); y = U/V,~; 6 = V==IV:~; gis the acceleration of grav- 
ity; and c is a certain functional. 

We investigate the auxiliary plane of the complex variable u. Let the domain D + be the 
interior of the unit disk with center at the point u = 0 and D- the exterior of the disk with 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
4, pp. 123-129, July-August, 1978. Original article submitted June 14, 1977. 

0021-8944/78/1.904-0521507.50 �9 1979 Plenum Publishing Corporation 521 



0 . ~ , _ .  

' I W,,..- o" 

Fig. I 

cuts from zero to one and from one to infinity, respectively. We map the domain D + (D-) onto 
~,(~) in such a way that the points A and B (Fig. i) will correspond to points e i~ e i2~, an 
infinitely distant of ~, will correspond to the point u = 0, and an infinitely distant point 
of ~2 will correspond to an infinitely distant point in the plane of u. The required mapping 
f,(u) [fi(u)] has the form [4] 

fdu) = - - i (  In u + c%(u)) (l,(u) = --f(  In u + oJ,(u))), 

where ml is a function regular inside the disk lul < 1 is a function regular outside lul 
~i). Here the wave profile goes over to a circle L of unit radius. Invoking the Kellogg 
theorem [5, 6] and the smoothness of the line Z, we can show that the functions dfk/dT satis- 
fy at L the HBider condition with exponent a(0 < a~ i), dfk/dT # 0 at L, dft/du is continu- 
ous for u # 0 in the disk lul < i, dfi/du is continuous outside lul < l, and the following 
relation holds: 

lira d f~ /du  = d f h l d ,  (2)  

(here and elsewhere d/dT is interpreted as the derivatives of limiting values, T = e i~, o 
[0, 2~]). 

We introduce the shift function 8(t) = T(t = e is, s ~ [0, 2~]): 

I~ (t) = ~-~ (h (t)). (3) 
Differentiating relation (3), we obtain 

[Y (t)dfo(~(t))/d~ = d/~(t)/dt. (4) 

By t h e  i n d i c a t e d  c o r r e s p o n d e n c e  o f  p o i n t s  i n  c o n s t r u c t i o n  o f  t h e  c o n f o r m a l  m a p p i n g s ,  Eq. 
(3) is equivalent to (4) and the conditions 

F(e iO) = e iO, ~(e i2n) = e i2n. (5) 

Thus, 8 is a diffeomorphism of L onto itself, and by the properties of dfk/dT the func- 
tion 8' (t) satisfies the }rdlder condition. 

We introduce the functions 

r+(u) = I 4- udco /du ,  t - ( u )  = I + ud(%/du .  

Using property (2), we rewrite (4) in the form 

fl (t) F+ r -  (8 (t)) = ~ (t). (6)  

I t  i s  w e l l  known t h a t  t h e  com pl ex  p o t e n t i a l s  o f  t h e  i n v e s t i g a t e d  f l o w s  a r e  e x p r e s s e d  by  
the equations [4] 

wL = --i(1 - -  ?) l n u ,  w2 = -- i(5 - -  %,) In u. 

Now the velocities squared at one given point of the wave have the form 

I v, 19 = (~ - ~)~ i~ = (8- ~)' ] r+( t ) l~ ,  Iv~ i r _  (g(t)liv (7) 

In the interval [0, 2~] we define the real function q(s) by the equation 

~(t) -- e~q('). (8) 

On the basis of expressions (i), (6)-(8), and the obvious equation 

t~ ' ( t ) /~( t )  . -  q'(s) 
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we express the shift function B(t) in terms of F+(t): 

[~ (t) = exp ~ +I V C + I m  i [ r n) dx - -  (9) 

where 

m 1 (1 -- ?)3 2?3 
= (1 + ml) (8 -- y)~; v ---- Fr (t + ml) (8 -- y)2' 

and the real constant b is determined from the condition that the origin is located at the 
average level of the liquids: 

k 

~ Y z d X  = O. (I0) 
0 

We determine the constant c, in turn, from the equation 

2hi ~ -~" v C -~ Irn i F+ (• d~ - -  d'~ 
eiO 

i, (il) 

which is deduced from the second condition (5). 

We have thus reduced the original problem to the solution of a nonlinear conjugation 
problem. The latter entails determination of the function F+(u), which is analytic inside 
lul < i, and the function F-(u), which is analytic outside lu]~ I; the limiting values of 
both functions are HBlder-continuous and satisfy relation (6)~ Here the function B(t) and 
the constants b and c are evaluated from (9)-(11). 

By the hypothesis of a nonvanishing relative velocity at points of the wave we infer 
from (6), (7), (9), and (ii) that the function B(t) given by Eq. (9) maps L one-to-one onto 
itself with preservation of direction and has a nonvanishing derivative B'. Also, since 
r+(t) and F -(t) satisfy the HBlder condition, B' also satisfies this condition. 

Making use of the fact that F+(t) and F-(t) are the limiting values of the correspond- 
ing analytic functions, we reduce (6) to the integral equation [7] 

r + ( t )  t I r +  (T) t t -]- K (t, T) dT - -  
�9 "r t L 

in which 

K(t ,  ~) = ~'(t)/[]~(~) -- [~(t) 1 -- i / ( r  - -  t). 

Defining the function F(t) by the equation 

(12)  

r+(t) = F(t) + l ,  
we represent (12) in the operator form 

t ! t K ( t , ~ ) ( F ( ' c ) §  F = - -  ~-~ i (13) 

For any values of the parameters ~ and ~, Eq. (13) has the trivial solution Fo = 0 [with c = 
(i -- ~)/~, b ~ 0], which corresponds to uniform flow. 

We compute the Fr6chet derivative R'(Fo, ~, ~; F) of the operator R(F, ~, ~) at the 
point Fo and analyze the following equation linearized at zero: 

F(t)  = (t -- ~)F(t) /2  + ( ~ ( t )  - -  ,,,~(O))vI4 
o r  

t 

5f I t ( ,F  ('~) d,~du. F ( t )  = ~  -5- ~--~i i~ ~ _  u (14) 
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The spectrum of the operator on the right-hand side of (14) consists of the eigenvalues 
2(1 + ~)/9 = i/h of multiplicity one. 

The corresponding eigenfunctions are t h, where h is a positive integer. The solution 
of Eq. (14) has the form at, where a is a dimensionless amplitude, and the Froude number is 

Fr ---- ?~/(m~(l - -  ?)e q- (i + m~)(5 - -  ?)'-')h. (15) 

This  e q u a t i o n  c o i n c i d e s  w i t h  t he  w e l l - k n o w n  r e s u l t s  o f  the  t h e o r y  o f  i n t e r n a l  waves [ 8 ] .  I n  
p a r t i c u l a r ,  f o r  mt = 0 and 6 = 0 we have  U 2 = gk /2~ .  We n o t e  t h a t  a f u l l  t r a v e r s a l  of  L c o r -  
r e s p o n d s  to one wave.  I t  i s  s u f f i c i e n t ,  t h e r e f o r e ,  to  c o n f i n e  the  a n a l y s i s  to the  v a l u e  h -- 
1. 

The s o l u t i o n  o f  the  n o n l i n e a r  e q u a t i o n  (12) i s  sough t  by an i t e r a t i v e  p r o c e d u r e .  I n  
each  i t e r a t i o n  we s o l v e  t he  l i n e a r  e q u a t i o n ,  in  t he  k e r n e l  o f  which t he  f u n c t i o n  B( t )  i s  
g i v e n  by Eq. ( 9 ) ,  where  F + i s  the  s o l u t i o n  o f  the  p r e c e d i n g  i t e r a t i o n .  For  the  n u m e r i c a l  s o l -  
u t i o n  o f  the  l i n e a r  e q u a t i o n  (12) i n  the  n - t h  i t e r a t i o n  i t  i s  p r a c t i c a l  to t r a n s f o r m  to  the  
e q u a t i o n  w i t h  a r e a l  k e r n e l  

2~ 

t K~ (s, (r) rn + (0) d(~ = -f- (16) r + (s) + ~-~ (s)), 

in which K1(s, o) = q'(s) cot ([q(=) -- q(s)])/2 -- cot [(0 -- s)/2] and q(o) is expressed by 
means of r+_r from (8) and (9). Given the condition that P~-t satisfies the H~Ider condition 
with exponent a, by the properties of the function B(t) [q(s) ] the kernel of Eq. (16) has a 
singularity of lower-than-first order at the point s = a: 

IKi( s, ~)1 < M/ Is - -  01 i-a, 

where M is a constant depending on rn+_1. Also, for Fn + i satisfying the H~ider condition the 
solution of the equation r + also satisfies this condition. 

We limit the discussion to waves for which 1/2 < a~ i. We represent the square-summa- 
ble kernel Kt(s, o) by a Fourier series: 

K~ (s, o) = ~ k ~ p  (~) ~ (s), 

where 
= = = 

We solve Eq. (16) by the method of moments [9], seeking the solution in the form 

n+i 
r + ( s ) = l +  E + 

To evaluate the coefficients a (n) b (n) we obtain a system of linear algebraic equations. We 
m m 

take the solution of Eq. (14)as the initial approximation. We determine the constant c n from 
Eq. (II). We test the convergence of the iterative procedure by letting the quantities c n -- 
Cn_ : and H P+n -- F+n-zll La tend to zero. The iterations are terminated upon satisfaction of Eq. 

(ii) with error less than or equal to i0 -s. 

We have carried out calculations for 6 = 0 and mt = 0.00129. In this case ~he lower 
liquid is motionless at infinite depth. The results of the calculations show that Eq. (15) in 
the plane (Y, Fr) determines a branching curve, at each point of which the trivial solution 
branches into a nontrivial solution corresponding to a particular wave motion (solid curve 
in Fig. 2). The nontrivial solution is characterized by the ratio H/l, where H is the wave 
height. The variation of H/% as a function of Fr for y = 0.6 is represented by the dashed 
curve in Fig. 3. This dependence agrees quite well with the results of [i], which are repre- 
sented by the solid curve in Fig. 3. All the solutions obtained here describe waves with a 
vertical axis of symmetry. The dashed curve in Fig. 2 represents the values of the parame- 
ters y and Fr for which the solution of Eq. (12) corresponds to a wave motion with H/% = 0.i. 
The calculated values of the quantities Cn, II F+n - Fn-1+ II ~2, and 2~ -- q(2~), and q(~) are given 

in Table i as a function Of the iteration number for values Fr = 1,16 and ~ = 0.6. The wave 
profile obtained for this case is shown in Fig. 4. 
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TABLE i 

Z 

i 157500 
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.,,~ ] | | 

F i g .  3 

? 

80 

90 

68 

38. tO -a 

87. t0 -a 

61.iO -6 

3,t2 

3,13 

3,14 

4 158i72 
5 p8185 

6 158199 

r  
+ 

+= 

49 

37 

29 

T 
g 

96. t0 -~ 

72. t0 -? 

79.10 -8 

3,14 

3,t4 
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The author is grateful to D. N. Gorelov for stating and discussing the problem, and to 
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